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Abstract—It is shown that the method of minimum autonomous
blocks (MAB) of Nikol’skii and Nikol’skaia can be reformulated
as the Trefftz finite-element method. Solutions of Maxwell’s
equations in form of plane waves are used to represent fields
inside a finite element. Their projections on a set of basis functions
on the surface of the element are used to obtain a descriptor of
the element in form of an admittance matrix. It is shown that
a point-matching projection procedure gives the frequency-do-
main transmission-line-matrix formulation and Galerkin-type
projection leads to the MAB formulation. Admittance matrix
representation of the descriptors of the elements makes it possible
to use a finite-element-type global matrix assembling procedure
and a sparse matrix solver.

Index Terms—Finite-element methods, transmission-line-matrix
methods.

I. INTRODUCTION

T HE solution of boundary value problems for Maxwell’s
equations based on a division or decomposition of the

problems into independently analyzed small volumes or
blocks with following re-composition of scattering matrix
descriptors of the blocks, called the method of minimum
autonomous blocks (MAB), was first suggested by Nikol’skii
and Nikol’skaia in the late 1970s [1], [2]. To find the descrip-
tors of the minimal blocks, the authors proposed to solve a
problem of diffraction of eigenmodes of some imaginary or
virtual waveguides with cross sections corresponding to the
faces of the block. Due to the diffraction nature of the problem
formulation, scattering matrices were used as the descriptors
of the blocks, which leads to a quite complex and nonstandard
re-compositional procedure. In addition to the problem of
finding eigenmodes of the virtual waveguides, which cannot
be solved analytically for some interesting shapes (e.g., tri-
angular), using Nikol’skii’s procedure, the fields distribution
inside the block has to be guessed, which makes it difficult to
generalize on blocks, for instance, in the form of a triangular
prism or tetrahedron.

As the story goes, Nikol’skii conceived the idea of MAB
trying to understand the ideas of a network representation of
three-dimensional (3-D) electromagnetic problems cultivated
by Sestroretzkii in Russia and based on the work of Kron [3].
In his paper published in 1983, Sestroretzkii obtained time-do-
main, as well as frequency-domain scattering matrices of a
so-called 3-D balanced node, which was later rediscovered in
the West as the condensed node of the transmission-line-matrix
(TLM) method by Johns [5] in the time domain and then
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by Jin and Vahldieck [6] in the frequency domain. Note that
Sestroretzkii did not only deduce the scattering matrices using
circuit-theory considerations, but also depicted the frequency-
and time-domain equivalent circuits of the condensed node.
Nikol’skii attempted to deduce the scattering matrix of the
condensed node [2] using the MAB formulation and was able
to do it only using Taylor’s series expansions and dropping
elements proportional to the cell size, which is not quite
correct. That illustrates the difference between the basics of the
MAB and TLM approaches, which are closely related, but in a
different way, as will be shown in this paper.

Although the theory of MAB is correct and was fruitful in
general, it was not popular in either Russia or in the West,
probably due to ambiguities in the derivation procedure.
Nikol’skii and Nikol’skaia obtained descriptors of the basic
blocks in different coordinate systems and for different media,
including anisotropic, and solved a very broad spectrum of
problems, showing the immense potential of the approach. The
TLM method found much broader support due to its relative
simplicity. It was shown that the TLM method constitutes a
finite-difference representation of Maxwell’s equations [7],
[8]. In those derivations, one has to know the resulting matrix
at least roughly to be able to deduce it then or to prove that it
approximates Maxwell’s equations. There is also a derivation
procedure based on the method of moments and cell boundary
mapping and linear expansion functions [9] that is close to
the approach suggested in this paper. The differential-geom-
etry-based method of local approximation of Seredov [10]
appears to be an alternative approach capable to provide
TLM-like descriptors for volumes of different shape directly
from Maxwell’s equations.

In this paper, the method of MAB is reformulated as the Tr-
efftz finite-element (TFE) method. The main idea of diffrac-
tion of eigenmodes of virtual waveguides on a minimal block
is turned into an expansion of the electromagnetic fields inside
the block into a set of solutions of Maxwell’s equations in the
form of plane waves. Boundary conditions on the surface of the
block are then imposed using projections of the internal fields
on a set of basis functions defined only on the surface of the ele-
ment (two-dimensional (2-D) elements). This approach always
gives the exact solution of Maxwell’s equations inside the ele-
ments and approximates the boundary conditions, including the
ones between the elements in a projection sense. The resulting
element can be classified as the Trefftz-type finite element [11].
In addition to altering the conceptual basis of the MAB method,
providing a systematic approach to build elements, this paper
suggests to use admittance matrix descriptors of the elements
instead of the scattering matrices. As a result, we obtain a trans-
parent global matrix assembling procedure similar to the stan-
dard procedure of the finite-element method, which provides
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the possibility of using a readily available sparse matrix solver
[11]. It also provides a simple and more natural procedure for
boundary conditions superimposing and combining the method
with the circuit theory.

Note that the authors of [1] and [2] presumably used the same
procedure to “guess” the fields inside the blocks (he certainly
needed to do it somehow), but this does not follow from their
published works where the diffraction conception is promoted
as the basis of the method.

To illustrate the TFE application, two different types of brick
elements are constructed. A 12 plane-wave field expansion com-
bined with point-matching projectors results in the admittance
matrix description of a brick that can be reduced to the scattering
matrix of the condensed TLM node in the frequency domain.
The same 12 plane-wave field expansion, but with averaging or
Galerkin’s projectors on the surface of the brick, gives the ad-
mittance matrix, which can be converted to the scattering matrix
of the brick MAB.

II. PROBLEM FORMULATION

The problem formulation constitutes the scope of possible
applications of TFEs. Consider a domaincomposed of
nonoverlapping finite sub-domains defined as

(1)

Each sub-domain is filled with a homogeneous isotropic
medium characterized by its properties as

(2)

where is the absolute permittivity of the sub-domain and
is the absolute permeability of the sub-domain. Both are com-
plex numbers in general and can be used to describe ideal and
nonideal dielectrics, semiconductors, and nonideal metals. A
sub-domain has either common boundaries with some other
sub-domains or is bounded by the electric or magnetic walls,
surface impedance conditions, or by cross sections of semi-infi-
nite waveguides where mode excitation and radiation conditions
must be appropriately applied.

The electric ( ) and magnetic ( ) fields are related by
Maxwell’s equations inside a sub-domainfor a harmonic
signal with the radian frequency

(3)

where denotes vector products anddenotes scalar prod-
ucts. We will denote a surface conduction current density on

Fig. 1. Brick element.

a common boundary of sub-domainsand as . Boundary
conditions for the common boundary can be written as

(4)

where is the unit vector normal to the surface . To com-
plete the problem formulation, we need to add boundary condi-
tions on perfect or lossy metal and resistive film surfaces, mag-
netic-wall conditions, and the radiation and excitation condi-
tions for waveguide cross sections. To model lumped-element
connections, auxiliary port regions can be introduced on the
boundaries between some sub-domains. The desired solution
of the electromagnetic problem is an immitance matrix relating
magnitudes of electric and magnetic fields of some eigenmodes
on the waveguide cross-sectional boundaries and integral volt-
ages and currents in all auxiliary port regions. To determine
the propagation characteristics of the eigenmodes and corre-
sponding matrices to transform the fields from the spatial to the
eigenmode domain and to get a generalized descriptor of the
problem, the method of “passage through the layer” [2], [12] or
a simultaneous diagonalization method [13], [14] can be used.

III. M ESHING PROBLEM AND BRICK ELEMENT

Let us subdivide all regions of the problem using
brick-shaped elements in a Cartesian coordinate system.
All external and internal boundaries of the problem are mapped
on surfaces of the brick elements that results in a stair–step
approximation of the boundary conditions. The grid can
be graded and adapted to the problem with some restric-
tions on connections between interfacing bricks. To obtain a
high-quality mesh for a problem, one can use Cartesian mesh
generation methods that are straightforward and simple in
nature, very computationally effective, and well elaborated in
the computational fluid dynamic [15].

One element of the grid is shown in Fig. 1, which from this
point on is the main object under investigation. The element
region is

(5)

where , , and are functions of the brick position in
the space. The element is uniformly filled with a material (2)
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defined by its permittivity and permeability . We drop the
region indexes for simplicity.

Faces of the brick are numbered as is shown in Fig. 1 and are
defined as

(6)

where are the unit vectors of the coordinate axes, and
vector defines the normal to the corresponding brick face.

IV. BRICK INTERIOR FIELDS

Instead of defining the imaginary or virtual waveguides cor-
responding to the faces of the brick element and solving the cor-
responding diffraction problem as is suggested in the method of
MAB [1], [2], we expand the field inside the element. For the
brick containing isotropic filling with unknown conditions on
the surface, the most general and natural expansion functions
are solutions of Maxwell’s equations in the form of plane waves.
Let us choose three propagation directions along the coordinate
axes. Each direction can be represented by the waves of two
polarizations and each wave can travel forward and backward
providing 12 total waves. This is the minimal number of waves
for a general 3-D brick element. The field distribution inside the
brick can be expressed as

(7)

where , and
are unknown coefficients of expansion,is a propagation con-
stant of a plane wave, and is a characteristic impedance of
the plane wave

(8)

One can take any number of plane waves traveling in any di-
rections to approximate some peculiarities of a problem, for in-
stance, providing a corresponding number of projectors to ob-
tain a defined system of equations for the unknown coefficients.
Solutions in forms of cylindrical and spherical waves can be
used to build elements for different coordinate systems. In gen-
eral, any traveling-wave solution can be used to decompose the
fields inside the element. The main principle is to use a minimal
number of waves inside to obtain the best approximation quality.
The conception can be generalized in the same way as Nikol’skii
and Nikol’skaia generalized the conception of the MAB [2]. The
generalized MAB’s were called autonomous multimode blocks
(AMBs). The idea was perfect, though the implementation con-
tained a flaw. The AMBs obtained as the solutions of the diffrac-
tion problem of eigenmodes of the virtual rectangular waveg-
uides corresponding to the brick faces had either zero electric
fields or zero magnetic fields in all nodes of the brick, depending
on the type of the waveguides used. It greatly limited the scope
of the applications to the problems that could be decomposed
into blocks with the nodes placed on the problem boundaries
with corresponding zero boundary conditions.

V. BRICK SURFACE FIELDS

With the plane-wave field expansion, defined in the previous
section, it is natural and convenient to define basis functions
for the faces – (6) as a set of six pairs of constant vectors
tangential to the corresponding faces and containing one unit
component of electric and one unit component of the magnetic
field. The face basis functions are denoted as

(9)

where is the face number and designates polarization. Vec-
tors and are related to each other as

(10)

where is the normal to the corresponding face. Definition of
the basis vectors in the form of (10) simplifies the boundary
conditions (4) satisfaction in the global matrix assembling or
re-composition procedure. The entire set of the electric-field ex-
pansion functions and their numeration is

1) 2)

3) 4)

5) 6)

7) 8)

9) 10)

11) 12)

(11)

Fig. 2(a)–(c) illustrates the basis functions (11). Corre-
sponding magnetic-field components are defined by (10). As
an alternative, a complete set of vector basis functions can be
obtained by solving Laplace’s equations in the corresponding
2-D domain [2] or it can be chosen as a set of polynomial
vector functions [16]. One can consider the faces as 2-D finite
elements [11], which Nikol’skii called virtual waveguides. In
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Fig. 2. Electric-field components of the basis functions. (a) For facesF1 and
F2. (b) For facesF3 andF4. (c) For facesF5 andF6.

the method of MAB, Nikol’skii actually used solutions of the
corresponding 2-D planar waveguide problems in the form of
waves going inside and out of the brick to find its scattering
matrix. A weak link in this approach is uncertainty in the
boundary conditions and necessity to “guess” the field structure
inside the element. One can still use the virtual waveguides
conception in the TFE approach, but it must be clearly stated
that they are only a set of functions to project the internal fields
of the element to satisfy the boundary conditions between the
elements. In addition, for triangular prisms or tetrahedrons, for
example, it can be cumbersome to build the functions for the
faces in the form of eigenwaves. The other vector functions can
be considered in this case and combined with the appropriate
number of plane waves inside the element.

Thus, the electric and magnetic field on the surface of the
brick can be expanded into a set of vector basis functions (11)
as follows:

(12)

To find unknown coefficients , or rather their ma-
trix dependency, we will use two projection operators. The first
and simplest one is the point matching. In this case,

(13)

where is the Dirac delta function that is equal to zero every-
where, except one point in the center of the face, where it
is equal to the unit. and are values of the elec-
tric and magnetic fields defined by (7) on the face of. The

point-matching procedure gives TFE that is referred to here
as Trefftz finite elements of Sestroretzkii (TFES) because Ses-
troretzkii actually obtained a similar description of the element
for a particular case of a cubic element [4] using different net-
work considerations. A similar network-based deduction proce-
dure of the condensed TLM node descriptor was later suggested
by Johns [5] and used later in the frequency domain [8].

Another possibility of projecting the internal field of the brick
on its surface is to test tangential to the surface fields with the
expansion functions and , which gives the Galerkin’s
projection procedure

(14)

where

(15)

are norms of the expansion functions. Their values are

(16)

The projectors (14) can also be referred to as averaging pro-
jectors. They lead to a description of the element that can be
converted into a scattering matrix descriptor of the method of
MAB. Thus, the element obtained with the averaging projectors
is called the Trefftz finite element of Nikol’skii (TFEN). De-
pending on a set of the basis functions defined on the surface
and their orthonormality, another projectors can be considered.

With both projectors [i.e., (13) or (14)], the total number of
unknown coefficients of the field expansion (12) on the brick
surface is 24. This is twice as much as the number of the un-
known expansion coefficients inside the brick (7). That means
that by defining just 12 expansion coefficients on the surface of
the brick, one can establish a relationship with the others and
find the 12 remaining ones. It also means that any problem with
uncertain boundary conditions on the brick surface can be de-
scribed by a 12 12 descriptor matrix relating and .
In this paper, the descriptor matrix is built in an admittance form

(17)

where and are vectors with 12 components defined by either
(13) or (14) as follows:

(18)

Superscript in (18) denotes transposition. The admittance
form (17) is convenient and natural for the re-composition of
joining elements and for corresponding boundary condition su-
perimposing. It leads to the standard matrix form formulation
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accepted in the finite-element method [11]. To find the-matrix
descriptor of the brick TFE, we assume that all surface expan-
sion coefficients of the electric field are zero, except one,
which is the unit

(19)

where is the Kronecker delta. This numerical experi-
ment gives the elements of the column of the -matrix as
projections of the corresponding magnetic fields

(20)

One can construct an immitance or mixed-type descriptor
in general, mixing appropriately projections of the electric
and magnetic fields in the left- and right-hand-side vectors
of a system of equations similar to (17). It is a convenient to
use such descriptors together with the admittance descriptors,
for example, in places where it is necessary to impose the
magnetic-wall boundary conditions.

VI. TFES

TFES is a brick TFE with descriptor obtained by the point-
matching projections (13) of the brick internal fields (7) on the
set of 24 2-D basis functions (11) defined on the surface of the
brick. To find the elements of the admittance matrix of TFES,
we will follow the numerical excitation procedure (19) that gives
the equations for the matrix elements (20). Substitution of the
expression for the electric field (7) inside the brick into the first
equation of (13) and then into (19) provides 12 equations with
12 unknown coefficients
per each out of 12 excitation states. Thus, one needs to solve 12
equations 12 times to find all elements of the-matrix (17). For-
tunately, the problem is much simpler because of the symmetry
of the equations (3) and geometrical symmetry of the brick. We
need to solve the system only once to find the first column of
the matrix, for example, and deduce the elements of the other
columns applying substitutions and transformations similar to
the ones suggested in [2]. Therefore, let us assume ,
and the other projections of the electric field are zero. We ob-
tain a system of 12 linear equations that can be divided into two
independent systems. The first system is a system of eight ho-
mogeneous equations with a nondegenerate matrix. It has only
the trivial solution

(21)

The second system of four equations is inhomogeneous and
can be written as

(22)

where

(23)

Solving (22) and substituting the resulting equations for the
coefficients into the equations for the mag-
netic fields inside the element (7) and then projecting them on
the faces of the brick with the magnetic-field projectors (13) pro-
vides equations for the first column of the admittance matrix. By
continuing the numerical excitation experiments for the other
11 projections of the electric field or, alternatively, using appro-
priate substitutions and transformations, it is possible to fill the
other 11 columns of the admittance matrix (17). The final ma-
trix is shown in (24) at the bottom of the following page, where

(25)

Functions , , , and in (25) are
defined by expressions

(26)

The parameters and are defined by (23) andis defined
as

(27)

Let us now consider a particular case of the brick element
descriptor (24) when all three dimensions of the brick are equal
( ). From (25) and (26) it follows that,



SHLEPNEV: TFEs FOR ELECTROMAGNETICS 1333

in this case, the -matrix is composed of only two different
nonzero elements

(28)

The inverted -matrix or impedance matrix of a cube looks
similar to the initial matrix (24) with coefficients defined in (28).
To obtain the impedance matrix, one needs to change the-ma-
trix multiplier from to and change signs of all nondiag-
onal elements. In fact, the admittance and impedance matrices
of the cube show the same relationship as the corresponding
matrices of a segment of transmission line. Thus, this model
of the cube can be considered a generalization of the transmis-
sion-line conception on 3-D structures (but it should not be con-
fused with the multimode generalization). The equivalent cir-
cuit of the cube depicted by Sestroretzkii [4] illustrates the idea
further. It can be shown that the inverted Y-matrix of the cube
corresponds to the impedance matrix of the impedance analog
of Maxwell’s equations obtained in [17]. Elaborating further,
we can deduce the frequency-domain TLM formulation. Let us
introduce normalized projections of the electric and magnetic
fields as

(29)

where and are defined by (18). We can now formally intro-
duce incident and reflected waves defined as

(30)

and a scattering matrix defined as

(31)

From (17) and (31)–(33), it follows that

(32)

where is the unit matrix 12 12. Substitution of the -ma-
trix (27) with the elements defined by (30) into (34) gives the
scattering matrix of the cube, as shown in (33), at the bottom of
the following page, where

(34)

The scattering matrix (33) corresponds to the one obtained by
Sestroretzkii in [4], taking into account the difference between
the numeration of the TFE basis functions and the balanced node
ports. The TLM symmetrical condensed node derived by Johns
in [5] does not contain the propagation delay factors (34) explic-
itly because of the time-domain formulation. The phase-shift
exponents were added to the original TLM-matrix later [18]
to build the frequency-domain TLM condensed node. It can be
shown that the -matrix of a cubic TLM node without stubs in
the frequency domain [18] corresponds to the-matrix (33), ob-
tained by the TFE method. Again, the difference in numeration
of the TLM node ports must be taken into account.

VII. TFEN

TFEN is a brick TFE obtained with expansion of electric and
magnetic fields inside the element into a set of 12 plane waves
(7). The unknown coefficients of the expansion are found using
an additional set of 24 expansion functions defined on the sur-
face of the element (11) and the Galerkin’s projections of in-
ternal fields on the faces of the brick (14). The admittance ma-
trix (17) is chosen as a descriptor of the brick. Let us again per-
form the numerical experiments (19) to find the elements of the
matrix using (20). The first experiment sets and
for the other 11 projections of the electric field. As with the
point matching, we have a system of 12 linear equations with
unknowns , which can be

(24)
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divided into two independent systems. The first is a homoge-
neous system with a nondegenerate matrix that leads to a trivial
solution (21). The second system of four equations is

(35)

where

(36)

The solution of the system (35) and subsequent substitution of
the resulting equations for the coefficients , , , and
into (7) gives the expressions for the magnetic field inside the
brick element. Projection of the magnetic field on the faces of
the brick with the magnetic-field projectors (14) provides equa-
tions for the first column of the admittance matrix. Carrying out
the same procedure 11 more times or using appropriate substi-
tutions and transformations, we can find the other 11 columns
of the matrix. The resulting -matrix has exactly the same form
(24) as in the case of TFES with the elements defined by (25) and
with different expressions for the functions , ,

, and

(37)

Note that the expressions (36) for, , and must be
substituted into (25) and (37) together with the following ex-
pressions for and :

(38)

The -matrix of the TFEN can be transformed into the scat-
tering matrix of the brick obtained by the MAB technique [1],
[2]. For illustration, consider a brick with all three dimensions
equal ( ). It can be shown that, in this
case, we have

(39)

Introducing normalization (29) and new wave variables (30),
we can formally define a scattering matrix (31) and express it
through the -matrix as (32). Substitution of the-matrix (24)
with the elements defined by (32)–(39) gives the scattering ma-
trix of the cube in (33) with elements defined as

(40)

(33)
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Taking into account the difference in the numeration and
orientation of the basis functions defined here (11) and in the
method of MAB [1], [2], we can conclude that (33) is exactly
the same as the one obtained in [1] and [2].

VIII. A SSEMBLINGPROCEDURE ANDBOUNDARY CONDITIONS

A global admittance matrix assembling procedure can be de-
fined simultaneously for the TFES and TFEN. Both elements
have the same admittance matrices of a brick (24) with different
expressions for the elements of the matrices. To define a gener-
alized assembling procedure, we need to define projections of
the conduction current density on the grid. This can be done
in the same way, as the field components are projected on the
brick faces. Let us define basis functions for the current density
as

(41)

Each face of the brick has two orthogonal unit basis vectors.
The subscripts in (41) designate that the basis functions will be
shared by two faces of two bricks to be united in the assembling
procedure. An arbitrary conduction current density on the brick
faces can be represented as

(42)

A projection of the conduction current on the basis functions
can be defined either with a point-matching operator similar to
(13) for TFES or with a Galerkin-type projector similar to (14)
for TFEN.

To proceed with the generalized assembling procedure, it is
convenient to rewrite the system (17) in a block-matrix form,
taking into account the structure of the-matrix (24)

(43)

where blocks are 2 2 matrices with elements that can be
established by a simple comparison of (24) and (43). Vectors

and are defined by (18).
Let us assume that we need to join brick () and brick ( ),

as is shown in Fig. 3. Faces of the brick ( ) and of

Fig. 3. Joining two bricks.

the brick ( ) coincide. The bricks can be filled with different
materials. Joining the bricks, we need to provide a continuity
condition for the tangential electric field and continuity or jump
conditions for the tangential components of the magnetic field
(4). For both bricks, we have necessary projections of the tan-
gential component of the fields (12) defined at the facesand

. They are and for the brick ( ) and and for
the brick ( ). Vector notations (18) for the face projections are
used here. Generalized boundary conditions (4) can be rewritten
for the brick boundary as

(44)

where is a vector with conduction current components (42)
projected on the common boundary between bricks () and ( ).
It is defined in the same way as the vectors(18). In general,
vectors have zero components where there are no conduction
currents. Boundary conditions (44) provide a simple procedure,
uniting the -matrix descriptors (43) of two bricks, shown in
(45), at the bottom of the following page, where

denotes the projections of the electric field on the common
boundary (44). The procedure (45) is transparent and recur-
sively applicable to construct a sparse global-matrix for the
whole grid. Special care must be taken if a face of a brick is
interfacing with two or more bricks. This is an important ele-
ment of the adaptive Cartesian grids [15]. It can be shown that a
corresponding numerical procedure can be expressed as simple
manipulations with rows and columns of the-matrices to be
united.

Different boundary conditions can be expressed through an
appropriate definition of and values in (45). Ideal metal- or
electric-wall boundary conditions are imposed by setting

for all faces of elements ( ) approximating the metal.
This leads to corresponding elimination of rows and columns in
the system (45) if the conduction currents are not to be calcu-
lated. The same is valid for infinitesimally thin metal layers. For
the magnetic wall, we need to set for all faces of ele-
ments ( ) approximating the boundary. This gives zeroes at the
right-hand side of (45), which can, for example, be eliminated
using the Gauss’s procedure. A hybrid mixed-type descriptor
instead of the admittance descriptor can bring those zeroes to
the left-hand side, which provides the possibility of eliminating
them at the assembling stage. For objects described by its sur-
face impedance, additional equations relating tangential compo-
nents of the electric field and conduction current density

must be taken into account in the assembling procedure.
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IX. NUMERICAL EXAMPLES

For our first example, let us examine a single brick element,
as shown in Fig. 1, with the electric-wall boundary conditions at
all faces, except one. The element dimensions are

m. The wavelength is 1.0 m and the element is filled
with free space. Let us excite the cube with the unit projection
of the -component of electric field at the face and find the
interior field distribution. To simulate the electric walls, we set
all other projections of the electric field on the surface of the
brick as zero. The boundary conditions can be expressed as

(46)

To find the field distribution inside the brick, we need to solve
the system (22) for the TFES or the system (35) for the TFEN
and substitute the expansion coefficients into
(7). By doing that, one can obtain expressions for the field com-
ponents of the TFES

(47)

Thus, we have one component of the electric fieldand two
components of the magnetic field and . They are varying
along the - and -axes and are constant along the-direction.
The other components are zero. Note that this is the exact solu-
tion of the Maxwell’s equations (3), but it only approximates the
solution of the stated problem. It is obvious from (47) that the
projection boundary conditions (46) give zero of only along
the -directed lines going through the centers of, , and ,
which is expected from the point-matching procedure and is il-
lustrated by a contour plot in Fig. 4(a). Fig. 4(b) shows a vector
plot of the corresponding distribution of the magnetic field in

the -plane of the cube. The solution for the cubic TFEN is
slightly more complex as follows:

(48)

The TFEN solution has the same components, , and
varying along the - and -axes and constant along the-direc-
tion. The other components are also zero. This is again the exact
solution of the Maxwell’s equations (3) and it approximates the
solution of the stated problem. It is different from the TFES. The
projection conditions (46) provide zeros of the integral average
values of , defined as (14) on , , and . The field dis-
tribution (48) is shown as a contour plot in Fig. 5(a). Fig. 5(b)
shows a vector plot of the corresponding distribution of the mag-
netic field in the -plane.

As a second example, let us consider a short-circuited seg-
ment of a parallel-plate waveguide excited by the plane wave
with the electric field along the-axis [19]. The example is a
simple validation experiment for a noncubic element. The line
segment looks like a brick shown in Fig. 1. It is oriented along

(45)
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Fig. 4. (a) Contour plot of thez-component of the electric field in thexy-plane
of the cubic TFES. (b) Vector plot of thex andy components of the magnetic
field in thexy-plane of the cubic TFES.

the -axis, 1.0-m long, and has a square cross section of 0.1 m
0.1 m in the -plane. Surfaces of the segment parallel to the
-plane and surface are electric walls. Surfaces par-

allel to the -plane are magnetic walls. Surface m
is excited by the plane wave with a-component of the elec-
tric field. In contrast to the first example, the problem can be
solved exactly with only one brick, with m and

m. Corresponding boundary conditions
are

(49)

Substituting (49) into the system (43), we can find
and then from (32), the reflection coefficient

(50)

Fig. 5. (a) Contour plot of thez-component of the electric field in thexy-plane
of the cubic TFEN. (b) Vector plot of thex andy components of the magnetic
field in thexy-plane of the cubic TFEN.

where , , , , and are defined by (25) and either (26)
for TFES or (37) for TFEN. We can, for example, check that
both elements give the exact value of the reflection coefficient
that is the unit magnitude and phase for the problem
with rad/m.

To verify the matrix assembling procedure, the problem for
rad/m was also solved numerically for different number

of bricks along the coordinate axes. The input impedance for the
plane wave at m is calculated using a recursive proce-
dure of an admittance matrix assembling and reduction for one
layer of the bricks in the -plane at a time [2]. The structure was
simulated starting from just one brick and up to 6416 16
bricks with both TFES and TFEN admittance matrices. The cal-
culated input impedance is328.300 868 . The result was in-
dependent of the number of bricks. That gives the value of the
reflection coefficient of the plane wave 1.70796327 rad, which
corresponds to the exact theoretical value .

As a last example, let us consider a segment of a parallel-plate
waveguide excited by the plane wave with the electric field
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Fig. 6. Parallel-plate waveguide partially blocked by a conductive plate
simulated: (a) with TFES bricks and (b) with TFEN bricks. The relative errors
errN for different number of bricksN along thex-axis are plotted versus the
number of the bricks along thez-axisnz.

along the -axis and partially blocked by a conductive plate
[19]. The example shows the convergence of the method for a
problem with a field singularity. Again, the line segment looks
like a brick, as shown in Fig. 1. It is oriented along the-axis,
1.0-m long, and has a square cross section of 1.0 m1.0 m
in the -plane. Surfaces of the segment at and

m are electric walls. Surfaces at and m
are magnetic walls. A surface at is divided into two
areas. It is an electric wall for m and a magnetic wall
for m. The problem is simulated for medium with

rad/m. The input impedance of the plane wave was es-
timated for a different number of bricks and normalized to the

input impedance of free space to get the phase of the reflec-
tion coefficient. For the TFES, the phase was2.46546626 rad
with 32 elements along the-axis and 32 elements along the
-axis, and 2.45764825 rad with 64 64 elements. These

values were independent of the discretization along the-axis
(problems with one, two, and four elements along the-axis
were simulated). The Richardson’s extrapolation on those two
grids gives phase value2.4498302 rad, which is considered
to be exact here to estimate calculation errors. The relative cal-
culation errors are plotted in Fig. 6(a) as functions of
the number of bricks along the-axis ( ). in desig-
nates the number of bricks along the-axis. Simulation of the
problem with TFENs gives phase2.46256247 rad for 32 32
elements and 2.45620889 rad for 64 64 elements. Again, it
is supposed that the Richardson’s extrapolation provides a more
accurate value of the phase that is2.4498553 rad. It coincides
with the TFES result up to the fourth digit after the decimal
point. As in the case of TFES, the relative calculation errors with
respect to the value considered as exact are shown in Fig. 6(b).
Both TFES and TFEN show good convergence and consistent
results. Note that TFEN provides slightly better accuracy for the
problem. Magnitudes of the reflection coefficients were units in
all experiments.

X. CONCLUSION

It was shown that the method of MAB can be reformulated
and generalized as the TFE method. It is suggested to use a
plane-wave solution of Maxwell’s equations as the intra-ele-
ment basis functions. The element descriptor construction pro-
cedure based on the integration over the element boundaries
only is proposed. Two different descriptors of a brick-shaped el-
ement in the form of admittance matrices have been constructed
and investigated as examples. It was shown that the expansion
of the brick interior field into 12 plane waves combined with
a projection on the brick surface with the point-matching pro-
cedure can be considered as a derivation procedure for the fre-
quency-domain TLM condensed node. The same intra-element
field expansion combined with the Galerkin-type projectors on
the surface lead to the admittance matrix, which was then con-
verted into the scattering matrix descriptor of MAB.

Elements of different shapes with polygonal and curvilinear
boundaries can be constructed following the procedure. The
intra-element basis functions can be optimized (varying the type
and number of the plane waves) to increase the element order
and to take into account some peculiarities of a problem. It
can be done independently from the surrounding elements be-
cause the inter-element continuity is not required at the element
building stage. It was also shown that the admittance form of the
element descriptors provides a simple global matrix assembling
procedure.
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