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Trefftz Finite Elements for Electromagnetics

Yuriy Olegovich ShlepnevMember, IEEE

Abstract—it is shown that the method of minimum autonomous by Jin and Vahldieck [6] in the frequency domain. Note that
blocks (MAB) of Nikol'skii and Nikol'skaia can be reformulated  Sestroretzkii did not only deduce the scattering matrices using
as the Trefftz finite-element method. Solutions of Maxwell's . e)it theory considerations, but also depicted the frequency-
equations in form of plan_e waves are used to represent f|_elds d i d . ivalent circuits of th d d nod
inside a finite element. Their projections on a set of basis functions &Nt lIMe-domain equivalent circuits ot the condensed node.
on the surface of the element are used to obtain a descriptor of Nikol'skii attempted to deduce the scattering matrix of the
the element in form of an admittance matrix. It is shown that condensed node [2] using the MAB formulation and was able
a point-matching pﬁQJeCt'O“ _profcedurle gives tgerrelq“k‘?“Cy'do' to do it only using Taylor's series expansions and dropping
main transmission-line-matrix formulation and Galerkin-type ; - o :

I . : : elements proportional to the cell size, which is not quite
projection leads to the MAB formulation. Admittance matrix . . ! .
representation of the descriptors of the elements makes it poss|b|e correct. That I||UStl'atES the d'ﬁerence betWeen the baSICS Of the

to use a finite-element-type global matrix assembling procedure MAB and TLM approaches, which are closely related, but in a

and a sparse matrix solver. different way, as will be shown in this paper.
Index Terms—Finite-element methods, transmission-line-matrix ~ Although the theory of MAB is correct and was fruitful in
methods. general, it was not popular in either Russia or in the West,

probably due to ambiguities in the derivation procedure.
Nikol'skii and Nikol'skaia obtained descriptors of the basic
blocks in different coordinate systems and for different media,
HE solution of boundary value problems for Maxwell'sincluding anisotropic, and solved a very broad spectrum of
equations based on a division or decomposition of thffoblems, showing the immense potential of the approach. The
problems into independently analyzed small volumes @M method found much broader support due to its relative
blocks with following re-composition of scattering matrixsimplicity. It was shown that the TLM method constitutes a
descriptors of the blocks, called the method of minimumnite-difference representation of Maxwell's equations [7],
autonomous blocks (MAB), was first suggested by Nikol'skiig]. In those derivations, one has to know the resulting matrix
and Nikol'skaia in the late 1970s [1], [2]. To find the descripat least roughly to be able to deduce it then or to prove that it
tors of the minimal blocks, the authors proposed to solveapproximates Maxwell’s equations. There is also a derivation
problem of diffraction of eigenmodes of some imaginary gsrocedure based on the method of moments and cell boundary
virtual waveguides with cross sections corresponding to th@apping and linear expansion functions [9] that is close to
faces of the block. Due to the diffraction nature of the problefhe approach suggested in this paper. The differential-geom-
formulation, scattering matrices were used as the descriptetsy-based method of local approximation of Seredov [10]
of the blocks, which leads to a quite complex and nonstandajgpears to be an alternative approach capable to provide
re-compositional procedure. In addition to the problem af_M-like descriptors for volumes of different shape directly
finding eigenmodes of the virtual waveguides, which canngiom Maxwell’s equations.
be solved analytically for some interesting shapes (e.g., tri-In this paper, the method of MAB is reformulated as the Tr-
angular), using Nikol'skii's procedure, the fields distributiorefftz finite-element (TFE) method. The main idea of diffrac-
inside the block has to be guessed, which makes it difficult ton of eigenmodes of virtual waveguides on a minimal block
generalize on blocks, for instance, in the form of a triangul@s turned into an expansion of the electromagnetic fields inside
prism or tetrahedron. the block into a set of solutions of Maxwell’s equations in the
As the story goes, Nikol'skii conceived the idea of MABform of plane waves. Boundary conditions on the surface of the
trying to understand the ideas of a network representationfibck are then imposed using projections of the internal fields
three-dimensional (3-D) electromagnetic problems cultivatesh a set of basis functions defined only on the surface of the ele-
by Sestroretzkii in Russia and based on the work of Kron [3hent (two-dimensional (2-D) elements). This approach always
In his paper published in 1983, Sestroretzkii obtained time-dgives the exact solution of Maxwell’s equations inside the ele-
main, as well as frequency-domain scattering matrices ofnfents and approximates the boundary conditions, including the
so-called 3-D balanced node, which was later rediscoveredgfes between the elements in a projection sense. The resulting
the West as the condensed node of the transmission-line-magikment can be classified as the Trefftz-type finite element [11].
(TLM) method by Johns [5] in the time domain and them addition to altering the conceptual basis of the MAB method,
providing a systematic approach to build elements, this paper
suggests to use admittance matrix descriptors of the elements

|I. INTRODUCTION
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the possibility of using a readily available sparse matrix solver
[11]. It also provides a simple and more natural procedure for

boundary conditions superimposing and combining the method z y5 °

with the circuit theory. az - L 1
Note that the authors of [1] and [2] presumably used the same Ay

procedure to “guess” the fields inside the blocks (he certainly 4 4

needed to do it somehow), but this does not follow from their .

published works where the diffraction conception is promoted i »

as the basis of the method.

To illustrate the TFE application, two different types of bricl€ig. 1. Brick element.
elements are constructed. A 12 plane-wave field expansion com-
bined with point-matching projectors results in the admittangecommon boundary of sub-domairsndm asjlm_ Boundary
matrix description of a brick that can be reduced to the scatteripgnditions for the common boundary can be written as
matrix of the condensed TLM node in the frequency domain.
The same 12 plane-wave field expansion, but with averaging ar 7] Fm =
Galerkin's projectors on the surface of the brick, gives the ad- (H (sem) — H (Slm)) = Jim
mittance matrix, which can be converted to the scattering matrix; x (El(slnl) — E"’(slnl)) =0, Stm =N (4)
of the brick MAB.

wheren is the unit vector normal to the surfaeg,,. To com-
plete the problem formulation, we need to add boundary condi-
[I. PROBLEM FORMULATION tions on perfect or lossy metal and resistive film surfaces, mag-
_ ) _netic-wall conditions, and the radiation and excitation condi-
The problem formulation constitutes the scope of possibigns for waveguide cross sections. To model lumped-element
applications of TFEs. Consider a domdhcomposed of?  connections, auxiliary port regions can be introduced on the
nonoverlapping finite sub-domains, defined as boundaries between some sub-domains. The desired solution
of the electromagnetic problem is an immitance matrix relating
r magnitudes of electric and magnetic fields of some eigenmodes
Q= U Qp. (1) on the waveguide cross-sectional boundaries and integral volt-
p=1 ages and currents in all auxiliary port regions. To determine
the propagation characteristics of the eigenmodes and corre-
sponding matrices to transform the fields from the spatial to the
eigenmode domain and to get a generalized descriptor of the
problem, the method of “passage through the layer” [2], [12] or
a simultaneous diagonalization method [13], [14] can be used.

e(z, y, z) =¢ep plx,y, 2) = pip, (v, 9y, 2) € (2)

Each sub-domaifr,, is filled with a homogeneous isotropic
medium characterized by its properties as

I1l. M ESHING PROBLEM AND BRICK ELEMENT

wheree,, is the absolute permittivity of the sub-domain argd Let us subdivide all regions of the problem using
is the absolute permeability of the sub-domain. Both are cofprick-shaped elements in a Cartesian coordinate system.
plex numbers in general and can be used to describe ideal Aficexternal and internal boundaries of the problem are mapped
nonideal dielectrics, semiconductors, and nonideal metals.OA surfaces of the brick elements that results in a stair—step
sub-domairf2,, has either common boundaries with some oth@pproximation of the boundary conditions. The grid can
sub-domains or is bounded by the electric or magnetic walRg graded and adapted to the problem with some restric-
surface impedance conditions, or by cross sections of semi-ififPns on connections between interfacing bricks. To obtain a
nite waveguides where mode excitation and radiation conditiohigh-quality mesh for a problem, one can use Cartesian mesh
must be appropriately applied. generation methods that are straightforward and simple in

The electric EP) and magnetic]@f“) fields are related by nature, very computationally effective, and well elaborated in
Maxwell’s equations inside a sub-domainfor a harmonic the computational fluid dynamic [15].

signal with the radian frequency One element of the grid is shown in Fig. 1, which from this
point on is the main object under investigation. The element
- - region is
V x H? = iwe, EP g
VXEP:—zwupHp s (.’L’,y,Z)EQp (3) QA:{(-/E’y’Z)’OS-/L'SA-/E,OSgSAy,OSZSAZ}
V*EP=0,V*HP =0 (5)

where x denotes vector products arddenotes scalar prod- where Az, Ay, andAz are functions of the brick position in
ucts. We will denote a surface conduction current density dine space. The element is uniformly filled with a material (2)
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defined by its permittivity= and permeability:.. We drop the ~ One can take any number of plane waves traveling in any di-

region indexes for simplicity. rections to approximate some peculiarities of a problem, for in-
Faces of the brick are numbered as is shown in Fig. 1 and atance, providing a corresponding number of projectors to ob-
defined as tain a defined system of equations for the unknown coefficients.

Solutions in forms of cylindrical and spherical waves can be
k= {(Aﬂ?, ¥,2),0<y <Ay, 0< 2 < AZ} ny =T used to build elements for different coordinate systems. In gen-
eral, any traveling-wave solution can be used to decompose the

Iy = {(0, Yy, 2), 0y <Ay, 022 AZ} M2 =—%0 fields inside the element. The main principle is to use a minimal
L number of waves inside to obtain the best approximation quality.
Iy = {(”77 Ay, z), 0<x <Az, 0< 2 < AZ} 3 =Yo The conception can be generalized in the same way as Nikol'skii
[ 0 0<2 <Az 0<z<A _ and Nikol'skaia generalized the conception of the MAB [2]. The
4= {(x’ %), 053 <A2,0<2% Z} 4 ="Yo generalized MAB'’s were called autonomous multimode blocks
_ (AMBS). The idea was perfect, though the implementation con-
L = 2),0< 2z < <y< 5 =7 . g i .
5 {(x’ v Az), 0SS Az, 0y < Ay} 5 = %0 tained a flaw. The AMBs obtained as the solutions of the diffrac-
_ _ tion problem of eigenmodes of the virtual rectangular waveg-
F:{ 1, 0),0< 2 <Az, 0< <A} =z U ! ) : ,
6 (9,0, 052 < Av, 0y < Ay e #o uides corresponding to the brick faces had either zero electric

®) fields or zero magnetic fields in all nodes of the brick, depending
o ) . on the type of the waveguides used. It greatly limited the scope
wherezo, 7o, Zo are the unit vectors of the coordinate axes, ang yhe applications to the problems that could be decomposed
vectorn; defines the normal to the corresponding brick f&&e 4 hiocks with the nodes placed on the problem boundaries
with corresponding zero boundary conditions.
V. BRICK INTERIOR FIELDS

Instead of defining the imaginary or virtual waveguides cor- V. BRICK SURFACE FIELDS

respond@ng to_ the f‘f"ces of the brick element and_ solving the COMWith the plane-wave field expansion, defined in the previous
responding diffraction problem as is suggested in the methOds%fction, it is natural and convenient to define basis functions

MAB [1], [2], we expand the field inside the element. For the, o taceqn 17, (6) as a set of six pairs of constant vectors
brick containing isotropic filling with unknown conditions Ontangential to the corresponding faces and containing one unit

the surface, the most general and natural expansion functiQ, ,,nent of electric and one unit component of the magnetic
are solutions of Maxwell’s equations in the form of plane Waveg. |4 The face basis functions are denoted as

Let us choose three propagation directions along the coordinate

axes. Each direction can be represented by the waves of W), El(m), (z,y, ») € F, l=1,...,6; m=1,2
polarizations and each wave can travel forward and backward 9)
providing 12 total waves. This is the minimal number of waves

for a general 3-D brick element. The field distribution inside therherel is the face number ane designates polarization. Vec-
brick can be expressed as torse;(m) andﬁl(m) are related to each other as

<f}) = < i ) T by <— W ) ke hagmy = = X ) (10)
_yO/_ 0 yO/_O wheremn; is the normal to the corresponding face. Definition of
+ ag - <_ Yo ) e < Yo cike  the pqsis vectors.in thg fo_rm of (10) simplifi_es the bou.ndary
Z0/Zo —Zo/Zo conditions (4) satisfaction in the global matrix assembling or

[
an, - Zo iRy g Zo by re-co_mpositio_n procedure._The entire_ set_ of the electric-field ex-
Y ZTo/Zo Y —%0/Zo pansion functions and their numeration is

+ay2 - _j(}Z ) oY 4 pyy <7 f/OZ ) -ty 1) @) =70 2) @) = Yo (z,y, 2) € I
%0 0 %0 0 3) G2y =Z0 4) Ca2) = Yos (z,y, z) € I
0 —ikz 0 ik
+a.-|_ -e +b.1- _ . Cary = Z, Caioy =T >
1 <yo/Zo> 1 <—Zlo/Z0 5) e3q) =%o 6) €3(2) = To, El’, Y 7; € 11::3 1)
T, Y, X)) € L'y

Fa- < _@0 ) e 4, <_ Yo ) ik 7) f4(1) Iijo 8) 5_4(2) = 5_07
—To/Zo To/Zo 9) 1) =Z0 10) €52y = Yo, (z,y, 2) € Iy

@ 11) 21y =To  12) g2y = Yo, (z,y, z) € Fe.

where(z, y, z) € Qa, andag, b, ayt, by, azp, b, L= 1, 2 Fig. 2(a)—(c) illustrates the basis functions (11). Corre-
are unknown coefficients of expansidnis a propagation con- sponding magnetic-field components are defined by (10). As

stant of a plane wave, and, is a characteristic impedance ofan alternative, a complete set of vector basis functions can be
the plane wave obtained by solving Laplace’s equations in the corresponding

2-D domain [2] or it can be chosen as a set of polynomial
b — g B 8 vector functions [16]. One can consider the faces as 2-D finite
TWVER 20 = (8)  elements [11], which Nikol'skii called virtual waveguides. In
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30 point-matching procedure gives TFE that is referred to here
2(1) 2% 1(1) @ as Trefftz finite elements of Sestroretzkii (TFES) because Ses-
2 / P 12 2 P 3@ troretzkii actually obtained a similar description of the element
Az A/ A SV -4 for a particular case of a cubic element [4] using different net-
i v work considerations. A similar network-based deduction proce-
4@ dure of the condensed TLM node descriptor was later suggested
x x by Johns [5] and used later in the frequency domain [8].
0 @ ax 0 ®) ax Another possibility of projecting the internal field of the brick
on its surface is to test tangential to the surface fields with the
5(2) expansion functiong,,,y andh;,,,), which gives the Galerkin’s
50 projection procedure
2 v _ 1 l - d
Az Z_/6(2) Vi(m) = N E(F) % 8y(m) ds
Ay 4 1 ¢
L% ity = / HR) « Ty ds,  1=1,...,6;
X tIE
0 Ax m=1,2 (14)
(c)
where
Fig. 2. Electric-field components of the basis functions. (a) For fékeand
F2. (b) For faces'3 and F'4. (c) For facesF’5 and F'6. N, = / Ci(m) * Ci(m) ds = / ﬁl(m) * ﬁl(m) ds (15)
F Fy

the method of MAB, Nikol'skii actually used solutions of theare norms of the expansion functions. Their values are

corresponding 2-D planar waveguide problems in the form of

waves going inside and out of the brick to find its scattering Ni =Ny =Az-Ay

matrix. A weak link in this approach is uncertainty in the N3=Ny= Az Az

boundary conditions and necessity to “guess” the field structure N5 = Ng = Az - Ay. (16)

inside the element. One can still use the virtual waveguides

conception in the TFE approach, but it must be clearly statedThe projectors (14) can also be referred to as averaging pro-

that they are only a set of functions to project the internal fieldgctors. They lead to a description of the element that can be

of the element to satisfy the boundary conditions between th@nverted into a scattering matrix descriptor of the method of

elements. In addition, for triangular prisms or tetrahedrons, fffAB. Thus, the element obtained with the averaging projectors

example, it can be cumbersome to build the functions for tie called the Trefftz finite element of Nikol'skii (TFEN). De-

faces in the form of eigenwaves. The other vector functions cBBnding on a set of the basis functions defined on the surface

be considered in this case and combined with the approprié@j their orthonormality, another projectors can be considered.

number of plane waves inside the element. With both projectors [i.e., (13) or (14)], the total number of
Thus, the electric and magnetic field on the surface of tiknown coefficients of the field expansion (12) on the brick

brick can be expanded into a set of vector basis functions (BHfface is 24. This is twice as much as the number of the un-

as follows: known expansion coefficients inside the brick (7). That means

. that by defining just 12 expansion coefficients on the surface of

By = Z Vi(m) * €l(m) the brick, one can establish a relationship with the others and

m=1,2 find the 12 remaining ones. It also means that any problem with

H = Z §1(m) .ﬁl(m)’ (x,y,2) € Fy; 1=1,...,6. uncertain boundary conditions on the brick surface can be de-
m=1,2 scribed by a 1 12 descriptor matrix relatingy(,,,y ands;(,,).

(12) Inthis paper, the descriptor matrix is built in an admittance form

To find unknown coefficients;(,.,), i), Or rather their ma- Y.o=i Yo (17)
trix dependency, we will use two projection operators. The ﬁr%heref_i andv are vectors with 12 components defined by either
and simplest one is the point matching. In this case, (13) or (14) as follows:
Vi(m) = / E(Fl) >k€l(m,) ’ 61 - ds ZI (il, 22, 'Zg, 54, 25, ZG)t
F - . .
. L 0= (i, )’
Zl(rn) = /F H(Fl)*hl(nl) .(51 -dS, = 1,...,6; Ez(ﬁl,ﬁg, 63, 54765, EG)t
1
m=1,2 (13) 7 = (v, v - (18)

whereé; is the Dirac delta function that is equal to zero every- Superscriptt in (18) denotes transposition. The admittance
where, except one point in the center of the fd¢gewhere it form (17) is convenient and natural for the re-composition of
is equal to the unitE(Fl) and ﬁ(Fl) are values of the elec- joining elements and for corresponding boundary condition su-
tric and magnetic fields defined by (7) on the faceffpf The perimposing. It leads to the standard matrix form formulation
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accepted in the finite-element method [11]. To find Yhenatrix
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Solving (22) and substituting the resulting equations for the

descriptor of the brick TFE, we assume that all surface expaeefficientsa,1, 0.1, ay1, by into the equations for the mag-
sion coefficients of the electric field are zero, except p6e),

which is the unit

Vi(m) = 61(771),])(1‘)7 l= 1,...,6;

whereé;,,,), p(») is the Kronecker delta. This numerical exper
ment gives the elements of the columfr) of theY-matrix as
projections of the corresponding magnetic fields

yl("l):P(T) = il(rn)a = 1, . 6;

One can construct an immitance or mixed-type descriptor
in general, mixing appropriately projections of the electric

m=1, 2

m=1, 2.

(19)

(20)

netic fields inside the element (7) and then projecting them on
the faces of the brick with the magnetic-field projectors (13) pro-
vides equations for the first column of the admittance matrix. By
continuing the numerical excitation experiments for the other
i_11 projections of the electric field or, alternatively, using appro-
priate substitutions and transformations, it is possible to fill the
other 11 columns of the admittance matrix (17). The final ma-

trix is shown in (24) at the bottom of the following page, where

and magnetic fields in the left- and right-hand-side vectors
of a system of equations similar to (17). It is a convenient to
use such descriptors together with the admittance descriptors,
for example, in places where it is necessary to impose the
magnetic-wall boundary conditions.

VI. TFES

TFES is a brick TFE with descriptor obtained by the point-
matching projections (13) of the brick internal fields (7) on the
set of 24 2-D basis functions (11) defined on the surface of the
brick. To find the elements of the admittance matrix of TFES,
we will follow the numerical excitation procedure (19) that gives
the equations for the matrix elements (20). Substitution of the
expression for the electric field (7) inside the brick into the first
equation of (13) and then into (19) provides 12 equations with
12 unknown coefficient®i, bxi, ayi, by, @z, b, I = 1,2
per each out of 12 excitation states. Thus, one needs to solve 12
equations 12 times to find all elements of ematrix (17). For-
tunately, the problem is much simpler because of the symmetry
of the equations (3) and geometrical symmetry of the brick. We
need to solve the system only once to find the first column of
the matrix, for example, and deduce the elements of the other
columns applying substitutions and transformations similar to
the ones suggested in [2]. Therefore, let us assumg = 1,

and the other projections of the electric field are zero. We oB€fined by expressions

tain a system of 12 linear equations that can be divided into two

ay :fa(av b)
2 :fa(av C)
3 —fa(bv a)
oy = fa(b, )
a5 —fa(cv b)
g —fa(cv a)
B = fsla, b)
B2 = fa(a, c)
B3 :fﬂ(bv a)
Ba = fa(b, ¢
Bs = fa(c, b)
Be = falc, a)
71 _f’Y(av b)
72 _f’Y(av C)
73 —fw(bv a)
Y4 —fw(b’ c)
75 = fy(c, b)
e _f’Y(Cv a)
61 = fs(Ax)
62 = fs(Ay)
b3 = fs(Az) (25)
Functionsfa(p, 9), fs(p, ¢), f+(p, @), andfs(A)in (25) are

independent systems. The first system is a system of eight ho-
mogeneous equations with a nondegenerate matrix. It has only

the trivial solution

falp ) = D) = 2% = 2pg 447 + 1
o (p2 - 1)fdn(p7 (.Z)
2p[p*q — p(¢® + 1) + 4]

fslp, @) =
’8( ) (p2 - 1)fdn(p7 (J)
ra =bra=ap=bp=a,=05b,1=a.=>b.o=0. Fpnq) = p(1—q?)
(21) i fdn(p7 (J)
22 _ 2
The second system of four equations is inhomogeneous and fan(p. @) =p™(¢ L+ 1) —dpg+q +1
can be written as s(A) = —————.
fo(&) 2sin(kA/2) (26)
1/a® a®> 1/b b A1
1 Lo b b (1) The parameterg andb are defined by (23) andis defined
rl
22} as
1/a a 1/ B2 Ayt 0 (22) vas)
_ _tkAz/2
1/a o 1 by 0 c=e¢ . (27)
where Let us now consider a particular case of the brick element
‘ ‘ descriptor (24) when all three dimensions of the brick are equal
a = kA2 = hAY/2 (23) (Az = Ay = Az = A). From (25) and (26) it follows that,
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in this case, th& -matrix is composed of only two different From (17) and (31)—(33), it follows that
nonzero elements
S=(U=2Y) - (U4 ZY)™* (32)

] =2 = (X3 = (¥4 — X5 = g — X

BL=Po=fs=0Fs=0=03=0 wherelJ is the unit matrix 12x 12. Substitution of th&-ma-
trix (27) with the elements defined by (30) into (34) gives the
scattering matrix of the cube, as shown in (33), at the bottom of
the following page, where

NM=PR=73=Ya=7T="6=01=02=03=1
a =—icot(kA/2)

4

= 2sin(kA/2) (28)

7 L ka2

p==ec" x =0. (34)

The invertedY -matrix or impedance matrix of a cube looks 2

similar to the initial matrix (24) with coefficients defined in (28). The scattering matrix (33) corresponds to the one obtained by
To obtain the impedance matrix, one needs to changgth®- Sestroretzkii in [4], taking into account the difference between
trix multiplier from 1/Z, to Z, and change signs of all nondiag-the numeration of the TFE basis functions and the balanced node
onal elements. In fact, the admittance and impedance matripests. The TLM symmetrical condensed node derived by Johns
of the cube show the same relationship as the correspondingb] does not contain the propagation delay factors (34) explic-
matrices of a segment of transmission line. Thus, this mod#y because of the time-domain formulation. The phase-shift
of the cube can be considered a generalization of the transn@igponents were added to the original TL$4matrix later [18]
sion-line conception on 3-D structures (but it should not be cote build the frequency-domain TLM condensed node. It can be
fused with the multimode generalization). The equivalent cishown that thes-matrix of a cubic TLM node without stubs in
cuit of the cube depicted by Sestroretzkii [4] illustrates the idehe frequency domain [18] corresponds to fhmatrix (33), ob-
further. It can be shown that the inverted Y-matrix of the cubrained by the TFE method. Again, the difference in numeration
corresponds to the impedance matrix of the impedance anatdghe TLM node ports must be taken into account.
of Maxwell's equations obtained in [17]. Elaborating further,
we can deduce the frequency-domain TLM formulation. Let us

. . L . - VIl. TFEN
introduce normalized projections of the electric and magnetic
fields as TFEN is a brick TFE obtained with expansion of electric and
1 magnetic fields inside the element into a set of 12 plane waves
V= ———-T 1=+/|Z0| i (29) (7). The unknown coefficients of the expansion are found using
V1ol an additional set of 24 expansion functions defined on the sur-

wherew andi are defined by (18). We can now formall intro—face of the element (11) and the Galerkin’s projections of in-
Ul y X ; y ternal fields on the faces of the brick (14). The admittance ma-
duce incident and reflected waves defined as

trix (17) is chosen as a descriptor of the brick. Let us again per-

ot = l( + ;) i = l(v _ Z) (30) form the numerical experiments (19) to find the elements of the
2 2 matrix using (20). The first experiment setg;) = 1 and0
and a scattering matrix defined as for the other 11 projections of the electric field. As with the
point matching, we have a system of 12 linear equations with
=8¢t Sectxiz (31) unknownsa,i, bai, ay, by, a., b, I = 1, 2, which can be
[ (a5} 0 /31 0 v3 0 Y3 0 63 0 —63 0

0 Q9 0 s 0 62 0 —&9 0 Y6 0 Y6
5t 0 oy 0 ¥3 0 ¥3 0 —b3 0 b3 0
0 s 0 Q9 0 —&9 0 62 0 Y6 0 Y6
" 0 " 0 a3 0 B3 0 0 b3 0 —b3
v _ i 0 01 0 -0 0 Qg 0 o ¥ 0 ¥ 0 (24)
Zo v 0 v 0 B3 0 as 0 0 =86 0 s
0 —61 0 61 0 N 0 oy ¥ 0 ¥ 0

0 Y2 0 Y2 (52 0 —62 0 0 g 0 /36
—61 0 61 0 0 Y4 0 Y4 [35 0 (033 0
0 Y2 0 Y2 —(52 0 (52 0 0 /36 0 Qg
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divided into two independent systems. The first is a homoggés,.(p, ¢)=p [q(kpkq—4)+kpkq+4] +q(kpyk,+4)
neous system with a nondegenerate matrix that leads to a trivial thpk,—4

solution (21). The second system of four equations is i

] o ] fo(d) =% (37)
a “ ky <1 B Z) k_b(b -1 Note that the expressions (36) fey b, andk,, k, must be
1 1 1 substituted into (25) and (37) together with the following ex-
1 1 = <1 - 3) k_(b -1 pressions for: andk.:
b b
1 N1 ke =ikAz ¢ =t (38)
ke <1 a) ke, (a—1) b b TheY -matrix of the TFEN can be transformed into the scat-
1 1 1 tering matrix of the brick obtained by the MAB technique [1],
T <1 - E) ,7(@ -1 1 1 [2]. For illustration, consider a brick with all three dimensions
- “ - B equal Az = Ay = Az = A). It can be shown that, in this
* 1 case, we have
ba}l 0
o =10 (35) ] =g =3 =y =y = g = @
by 0 Pr=Pr=Ps=P1=F=Ps=p
yl

M=T2=7V3=74=75="6=7
where 6, =6,=8:=6

a =icot(kA/2) {

2 — (k?A% 4+ 2) COS(/{JA):|

ko = ikAx Ky =ikAy a=c*AT p= kA (36) Jan

, 2cos(kA) + k2A2 — 2
The solution of the system (35) and subsequent substitution of B =icot(kA/2) [ o
the resulting equations for the coefficients , .1, a1, andb,,; cos(kA) — 1
into (7) gives the expressions for the magnetic field inside the v =1kA [f—}
dn

brick element. Projection of the magnetic field on the faces of 5 5 5 2
the brick with the magnetic-field projectors (14) provides equa- fan = (K*A% + 4) cos(kA) + kA% — 4

tions for the first column of the admittance matrix. Carrying out §— L (39)

the same procedure 11 more times or using appropriate substi- kA

tutions and transformations, we can find the other 11 columnsintroducing normalization (29) and new wave variables (30),
of the matrix. The resultiny-matrix has exactly the same formwe can formally define a scattering matrix (31) and express it
(24) asinthe case of TFES with the elements defined by (25) afough theY -matrix as (32). Substitution of theé-matrix (24)

with different expressions for the functiotfs(p, ¢). fs(p, ¢), with the elements defined by (32)—(39) gives the scattering ma-

f+(p, @), and fs(A) trix of the cube in (33) with elements defined as
. EAT?
_p2 [q(kpkq—2)+kpk,+2] +q(kpke+2)+ kg —2 Y=o
falp,a)= ( )
(p—1) fan(p. @) 1—12
2[p?(¢— 1) —plg+Dkyky—q+1] XTr-pe
falp, @)= T 2
(p_ )fdn(p7 Q) I:—Sin(/{;A/Q)
£-(p q):M -~
e Jan(p: @) T=cm" (40)
r o0 0 x O p 0 p 0 o 0 —¢p 0 7
0 0 0 x 0 ¢ 0 —¢ 0 ¢ 0 @
x 0 0 0 v 0 ¢ 0 —p 0 v 0
0 x 0 0 0 —¢ O v 0 v 0 @
v 0 v 0 0 0 x 0 0 ¢ 0 —p
0 p 0 —p 0 0 0 X p 0 p 0
§= ¢ 0 ¢ 0 x O 0 0 0 —» 0 @ (33)
0 —¢p O v 0 x 0 0 v 0 v 0
¢ 0 —¢p 0 0 v 0 v 0 0 x 0
0 v 0 @ ¢ 0 —p 0 0 0 0 X
—p 0 p 0 0 p 0 @ x O 0 0
L O ¢ O ¢ —¢ 0 ¢ 0 0 x O 0 |
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Taking into account the difference in the numeration and
orientation of the basis functions defined here (11) and in the
method of MAB [1], [2], we can conclude that (33) is exactly 2
the same as the one obtained in [1] and [2].

2

VIII. A SSEMBLING PROCEDURE ANDBOUNDARY CONDITIONS x

A global admittance matrix assembling procedure can be de- )

fined simultaneously for the TFES and TFEN. Both elemeniy. 3. Joining two bricks.
have the same admittance matrices of a brick (24) with different

expressions for the elements of the matrices. To define a gengks pyick (3) coincide. The bricks can be filled with different
alized assembllng procedur_g, we need t_o deﬂ_ne projections,of e jas, Joining the bricks, we need to provide a continuity
the conduction current densify,, on the grid. This can be done ., gition for the tangential electric field and continuity or jump
in the same way, as the field components are projected on g, jitions for the tangential components of the magnetic field
brick faces. Let us define basis functions for the current denst%. For both bricks, we have necessary projections of the tan-

as gential component of the fields (12) defined at the faEgsand
5 - FB. They ares# and7 " for the brick (4) andw 2 andi for
<f12<1)> = <;°>, (z,y, z) € Fy, Fy the brick (B). Vector notations (18) for the face projections are
J12(2) Yo used here. Generalized boundary conditions (4) can be rewritten
J zZ for the brick boundary as
<134(1)> = <;O>7 (‘Tv Y, Z) S F37 F4 y
134(2) 0 7B A 4B
Js6(1)\ _ [ To y 2 1= 12
<[756(2)) a <§0>’ (29, 2) € B, Fo. (“1) @23 - E? =0 (44)

Each face of the brick has two orthogonal unit basis vectomhereTgB is a vector with conduction current components (42)
The subscripts in (41) designate that the basis functions will peojected on the common boundary between brieRsahd 5).
shared by two faces of two bricks to be united in the assemblitigs defined in the same way as the vectqrgl8). In general,
procedure. An arbitrary conduction current density on the bristectors] have zero components where there are no conduction

faces can be represented as currents. Boundary conditions (44) provide a simple procedure,
uniting theY -matrix descriptors (43) of two bricks, shown in
T = Z Lim(n) * i) (9, 2) € Fym: (45), at the bottom of the following page, w_h@rézB =7t =
Myl ’ 7§ denotes the projections of the electric field on the common
71 =1 m=2 [=3 m=4 [=5; boundary (44). The procedure (45) is transparent and recur-

sively applicable to construct a sparse gloBamatrix for the
whole grid. Special care must be taken if a face of a brick is

o ) . . interfacing with two or more bricks. This is an important ele-
A projection of the conduction current on the basis functiongent of the adaptive Cartesian grids [15]. It can be shown that a

can be defined either with a point-matching operator similar {o,.rasnonding numerical procedure can be expressed as simple
(13) for TFES or with a Galerkin-type projector similar to (14},5pipylations with rows and columns of thiematrices to be
for TFEN. united.

To proceed with the generalized assembling procedure, it iSpjgterent houndary conditions can be expressed through an
convenient to rewrite the system (17) in & block-matrix formy o oriate definition off andi values in (45). Ideal metal- or
taking into account the structure of thematrix (24) electric-wall boundary conditions are imposed by settifig=
_ - 0 for all facesF/¢ of elements K) approximating the metal.

m = 6. (42)

Yip Yo Yis Ya3 Yis Yo U fl This leads to corresponding elimination of rows and columns in
Y1 Yi1 Yoz Yiz Yoz Yij Ta 12 the system (45) if the conduction currents are not to be calcu-
Yo, Yy VYas Yis Yas Yis Ts is lated. The same is valid for |nf|£1}t’e3|mally thin meta!!ayers. For
Ve Ve Y Vi Y Vi | =1-| 43) themagneticwall, weneedtosgt = 0forallfacesF;" of ele-
Al Ssl S4s 233 A4S 435 U4 t ments () approximating the boundary. This gives zeroes at the
Y51 Yer Ysz Ye3 Yis Yo Us i5 right-hand side of (45), which can, for example, be eliminated
| Yo1 Yi1 Yoz Yis Yg Yis| [T | %6 | using the Gauss’s procedure. A hybrid mixed-type descriptor

instead of the admittance descriptor can bring those zeroes to
where blocks;,,, are 2x 2 matrices with elements that can béhe left-hand side, which provides the possibility of eliminating
established by a simple comparison of (24) and (43). Vectdfiem at the assembling stage. For objects described by its sur-
T, andi; are defined by (18). face impedance, additional equations relating tangential compo-
Let us assume that we need to join bricK) (and brick (8), nents of the electric field 4 and conduction current density
as is shown in Fig. 3. Facdg* of the brick (4) and F} of TfQB must be taken into account in the assembling procedure.
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IX. NUMERICAL EXAMPLES the zy-plane of the cube. The solution for the cubic TFEN is

For our first example, let us examine a single brick elemerﬁj,Ightly more complex as follows:

as shownin Fig. 1, with the electric-wall boundary conditions at  E, = a,,. cos(27x) + a,, cos(2my) + ay; sin(27z)
all faces, except one. The element dimensiongare= Ay =

' a + ay; sin(27y)
Az = 0.1 m. The wavelength is 1.0 m and the element is filled

1

with free space. Let us excite the cube with the unit projection  H, =z‘% (—ay, sin(27y) + ay,; cos(2my))

of the z-component of electric field at the fadg and find the

interior field distribution. To simulate the electric walls, we set ~ H, =i1207r (Gop sin(2mx) — ag; cos(2mz))

all other projections of the electric field on the surface of the _ _

brick as zero. The boundary conditions can be expressed as A 10\/3(7 - 3\/3)
! fdnac

Uim) = Oy, 1), E=1o 6 m=1,2. (46) 721/200 — 40v/5 — 101/6250 — 2750v/5

Ay =

To find the field distribution inside the brick, we need to solve 5 fana
the system (22) for the TFES or the system (35) for the TFEN  fana =’ (\/5 - 1) —20V5 (7 — 3\/3)

and substitute the expansion coefficiems, b1, ¢y1, by into
(7). By doing that, one can obtain expressions for the field com- _ —2my/25/4 - 5V/5/2

ponents of the TFES ur fany
7r\/3 (2 — \/5)
E. = (\/B-i- 3) . [— cos(2rz) + cos (2n(y — 1/20))} yi = T o
(\@ + 3) Fumy =72 +20V/5 (2 - \/3) . (48)
H, = —i~———*sin (2n(y — 1/20))
1207 The TFEN solution has the same componets H.., andH,
. (\/3 + 3) _ varying along the:- andy-axes and constant along thalirec-
H, = BT sin(2rz). (47)  tion. The other components are also zero. This is again the exact

solution of the Maxwell’s equations (3) and it approximates the

Thus, we have one component of the electric fiBldand two  solution of the stated problem. Itis different from the TFES. The
components of the magnetic field,, andH,,. They are varying projection conditions (46) provide zeros of the integral average
along thex- andy-axes and are constant along thdirection. values ofE,, defined as (14) o, F3, andFy. The field dis-
The other components are zero. Note that this is the exact sdhibution (48) is shown as a contour plot in Fig. 5(a). Fig. 5(b)
tion of the Maxwell's equations (3), but it only approximates thehows a vector plot of the corresponding distribution of the mag-
solution of the stated problem. It is obvious from (47) that theetic field in thexy-plane.
projection boundary conditions (46) give zeroff only along As a second example, let us consider a short-circuited seg-
thez-directed lines going through the centerdsf £, andFy, ment of a parallel-plate waveguide excited by the plane wave
which is expected from the point-matching procedure and is With the electric field along the-axis [19]. The example is a
lustrated by a contour plot in Fig. 4(a). Fig. 4(b) shows a vecteimple validation experiment for a noncubic element. The line
plot of the corresponding distribution of the magnetic field isegment looks like a brick shown in Fig. 1. It is oriented along

~-—AB
YAHYE Y4 YA Yd YA YE YE YE YE YE YE] [vif I{i
i ¥4 vs vl vd vd 0 0 0 0 0 73 A
Y3t Yii Y Y Y4 Yg 00 0 0 0 0 CEy fi
Yi o Ys Yg Y Y4 Yss 0 0 0 0 0 iy ba
Y4 Y4 YA Yd YA Yd o 0 0 0 0 v
ebooovsh vg v Y@ v o 0o 0 0 0 ¢ | = i (45)
Y 0 0 0o 0o o Y7 v§ vE v vE| |7P
i 0 0 0 0 0 YF YH Y YE YE oY gf
Vit 0 0 0 0 0 Yf§ V§ Vi3 VE V38 vy B
Y2 0 0 0o o0 o YE Y YE vE vE| |wp f;
I 0 0 0 0 0o Y& v§ vE vE vE] Lvf | f;
L 2g
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Fig. 4.

field in the zy-plane of the cubic TFES.
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(a) Contour plot of the-component of the electric field in they-plane Fig.5
of the cubic TFES. (b) Vector plot of the andy components of the magnetic %,

(a_) Contour plot of the-component of the electric field in they-plane

of the cubic TFEN. (b) Vector plot of the andy components of the magnetic
field in the zy-plane of the cubic TFEN.

the z-axis, 1.0-m long, and has a square cross section of O. Jwrﬂereal, as, 33, 71, andhs are defined by (25) and either (26)
x 0.1 m in thezy-plane. Surfaces of the segment parallel to thl%r TFES or (37) for TFEN. We can, for example, check that

zy-plane and surface = 0 are electric walls. Surfaces par- both elements give the exact value of the reflection coefficient

allel to thexz-plane are magnetic walls. Surface= 1.0 m

is excited by the plane wave with-acomponent of the elec- with & = 7 rad/m.

tric field. In contrast to the first example, the problem can be
solved exactly with only one brick, witkihxz

Ay = Az = A = 0.1 m. Corresponding boundary conditions k=

are

vy =1

Vi(2) =V2(1) = V2(2) = Vs(1) =

1.0 m and

Us(2) = Ve(1) = V(2) = 0
i3(1) = 13(2) = la1) = tag2) = 0.

(49)

Substituting (49) into the system (43), we can fing;) 1(1)
and then from (32), the reflection coefficient

S1wy,10) =~

ar(asz 4 f3) —az — Pz —

2v1y3

ai(as + ) + az + Pz — 2v17v3

(50)

that is the unit magnitude andl4 — = phase for the problem

To verify the matrix assembling procedure, the problem for
7 rad/m was also solved numerically for different number

%f bricks along the coordinate axes. The inputimpedance for the
plane wave at = 1.0 m is calculated using a recursive proce-
dure of an admittance matrix assembling and reduction for one
layer of the bricks in the@z-plane at atime [2]. The structure was
simulated starting from just one brick and up to 4.6 x 16
bricks with both TFES and TFEN admittance matrices. The cal-
culated input impedance i828.300 8682. The result was in-
dependent of the number of bricks. That gives the value of the
reflection coefficient of the plane wave 1.70796327 rad, which
corresponds to the exact theoretical vatiel — .
As a last example, let us consider a segment of a parallel-plate
waveguide excited by the plane wave with the electric field
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input impedance of free space to get the phase of the reflec-
tion coefficient. For the TFES, the phase wa2.46546626 rad
with 32 elements along the-axis and 32 elements along the
z-axis, and—2.45764825 rad with 64 64 elements. These
values were independent of the discretization alongythaeis
(problems with one, two, and four elements along $haxis
were simulated). The Richardson’s extrapolation on those two
grids gives phase value2.4498302 rad, which is considered
to be exact here to estimate calculation errors. The relative cal-
culation errorserr/N are plotted in Fig. 6(a) as functions of
the number of bricks along theaxis (nz). IV in err NV desig-
nates the number of bricks along theaxis. Simulation of the
problem with TFENS gives phase2.46256247 rad for 32 32
elements and-2.45620889 rad for 64 64 elements. Again, it

is supposed that the Richardson’s extrapolation provides a more
accurate value of the phase thati2.4498553 rad. It coincides
with the TFES result up to the fourth digit after the decimal
point. As in the case of TFES, the relative calculation errors with
respect to the value considered as exact are shown in Fig. 6(b).
Both TFES and TFEN show good convergence and consistent
results. Note that TFEN provides slightly better accuracy for the
problem. Magnitudes of the reflection coefficients were units in
all experiments.

X. CONCLUSION

It was shown that the method of MAB can be reformulated
and generalized as the TFE method. It is suggested to use a
plane-wave solution of Maxwell's equations as the intra-ele-
ment basis functions. The element descriptor construction pro-
cedure based on the integration over the element boundaries
only is proposed. Two different descriptors of a brick-shaped el-
ement in the form of admittance matrices have been constructed
and investigated as examples. It was shown that the expansion
of the brick interior field into 12 plane waves combined with
a projection on the brick surface with the point-matching pro-
cedure can be considered as a derivation procedure for the fre-
guency-domain TLM condensed node. The same intra-element
field expansion combined with the Galerkin-type projectors on
the surface lead to the admittance matrix, which was then con-
verted into the scattering matrix descriptor of MAB.

Elements of different shapes with polygonal and curvilinear
boundaries can be constructed following the procedure. The

Fig. 6. Parallel-plate waveguide partially blocked by a conductive plai@tra-element basis functions can be optimized (varying the type
simulated: (a) with TFES bricks and (b) with TFEN bricks. The relative erroand number of the plane waves) to increase the element order

err N for different number of bricksV along thex-axis are plotted versus the

number of the bricks along theaxisnz.

and to take into account some peculiarities of a problem. It
can be done independently from the surrounding elements be-
cause the inter-element continuity is not required at the element

along thez-axis and partially blocked by a conductive plat‘Building stage. It was also shown that the admittance form of the

[19]. The e_xample Sh_OWS th? conve_rgence_of the method fOpR, ¢ descriptors provides a simple global matrix assembling
problem with a field singularity. Again, the line segment IOOkﬁrocedure.

like a brick, as shown in Fig. 1. It is oriented along thexis,
1.0-m long, and has a square cross section of 1.0 0 m
in the zy-plane. Surfaces of the segmentzat= 0 and> =
1.0 m are electric walls. Surfaces at= 0 andy = 1.0 m
are magnetic walls. A surface at = 0 is divided into two
areas. Itis an electric wall for < 1/2 m and a magnetic wall
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